Brief Update on Ttbar without MET

 $L = 100 \text{ pb}^{-1}$

= 100 br	S/B	Αε(%)
Sel A	3	5.5
Sel B	4.7	2.7

	S/B	Αε(%)
Sel A	2.36	5.99
Sel B	3.27	2.92

With MET cut

No MET Cut

The MET cut of 20 GeV doesn't seem to make All that much difference.

We should be able to obtain a top rich sample without which we can then look at to commission The MET observable.

Preliminary!

The G2-MSSM at the LHC

Bobby S. Acharya

Abdus Salam ICTP and INFN Trieste

New Signatures for the LHC, Michigan. January 10th 2008.

Based Upon

- Work done with the MCTP, Ann Arbor
 - K. Bobkov, P. Grajek, G. Kane, P. Kumar,
 J. Shao
- Two earlier foundational papers:
 - "M Theory Solution to the Hierarchy Problem", PRL 97, 191601, 2006
 - "Explaining the Electroweak Scale and Stabilising Moduli in M theory" hepth/0701034
- Mostly taken from
 - "The G2-MSSM", arXiv 0801.0478
 - "The G2-MSSM at the LHC", to appear

Outline of Talk

• Introducing the "G2-MSSM" - a supersymmetric particle physics model essentially derived from M theory.

Mass Spectrum of the G2-MSSM

• The G2-MSSM at the LHC - unique and reasonably identifiable set of signatures

 Compare ATLAS and CMS detection of the G2-MSSM

Introducing the G2-MSSM

- In the two earlier papers we explained how to stabilise <u>all</u> moduli whilst generating the hierarchy between M_W and M_{pl} , preserving Grand Unification
- M theory vacua without FLUX.
- G2-manifold xtra dimensions + SUSY
- Strong Dynamics <u>both</u> generates a small scale <u>and</u> a potential for all <u>moduli</u>
- Unique de Sitter vacuum
- Can <u>calculate</u> most of the spectrum BSM

$$W^{np} = A_1 e^{ib_1 f_1} + A_2 e^{ib_2 f_2} . \quad f_k = \sum_{i=1}^N N_i^k z_i = \frac{\theta_k}{2\pi} + i \frac{4\pi}{g_k^2}$$

$$K = -3\ln(4\pi^{1/3}V_X)\,, (1)$$

where the volume of the G_2 holonomy manifold as a function of the N scalar moduli s_i is (in 11d units)

$$V_X = \prod_{i=1}^N s_i^{a_i}$$
, with $\sum_{i=1}^N a_i = 7/3$. (2)

$$V = \frac{1}{48\pi V_X^3} \left[\sum_{k=1}^2 \sum_{i=1}^N a_i \nu_i^k \left(\nu_i^k b_k + 3 \right) b_k A_k^2 e^{-2b_k \vec{\nu}^{k} \cdot \vec{a}} + 3 \sum_{k=1}^2 A_k^2 e^{-2b_k \vec{\nu}^{k} \cdot \vec{a}} \right]$$

$$-2\sum_{i=1}^{N}a_{i}\prod_{k=1}^{2}\nu_{i}^{k}b_{k}A_{k}e^{-b_{k}\vec{\nu}^{k}\cdot\vec{a}}-3\left(2+\sum_{k=1}^{2}b_{k}\vec{\nu}^{k}\cdot\vec{a}\right)\prod_{j=1}^{2}A_{j}e^{-b_{j}\vec{\nu}^{j}\cdot\vec{a}}$$

$$(m_{3/2})_{0}^{(1,2)} = m_{p} 2^{1/2} \pi^{3} \left(7 + \sqrt{17}\right)^{\frac{7}{4}} \left(N_{1} N_{2}\right)^{\frac{7}{4}} A_{2} P \left| \frac{P - Q}{P Q} \right| \left(\frac{A_{2} P}{A_{1} Q}\right)^{-\frac{P}{P - Q}} \left(\frac{PQ}{P - Q} \ln \frac{A_{2} P}{A_{1} Q}\right)^{-\frac{7}{2}}$$

$$\sim m_{p} 2.97 \times 10^{3} \left(N_{1} N_{2}\right)^{\frac{7}{4}} A_{2} P \left| \frac{P - Q}{P Q} \right| \left(\frac{A_{2} P}{A_{1} Q}\right)^{-\frac{P}{P - Q}} \left(\frac{PQ}{P - Q} \ln \frac{A_{2} P}{A_{1} Q}\right)^{-\frac{7}{2}}$$

$$(162)$$

$$\begin{split} M_{1/2} &\approx -\frac{e^{-i\gamma_W}}{P\,\ln\left(\frac{A_1Q}{A_2P}\right)} \left(1 + \frac{2}{\phi_0^2\left(Q - P\right)} + \frac{7}{\phi_0^2\,P\,\ln\left(\frac{A_1Q}{A_2P}\right)}\right) \times m_{3/2}\,, \\ M_{1/2} &\approx -\frac{e^{-i\gamma_W}}{84} \left(1 + \frac{2}{3\phi_0^2} + \frac{7}{84\phi_0^2}\right) \times m_{3/2} \,. \end{split}$$

$$pprox -e^{-i\gamma_W}0.024 imes m_{3/2}$$
 .

Introducing the G2-MSSM

- The Spectrum is determined by the particular G2 manifold, X.
 - Many qualitative features don't depend on detailed properties of X:
- Heavy Squarks/Sleptons, Light Gauginos.
- Particular X's give values for "microscopic" constants
 - (eg rank of gauge groups, and other integers) which determine the detailed spectrum.
- These constants can be varied <u>within</u> reason:
 - Unification + the SUGRA approximation. Typical.
- This defines the G2-MSSM

G2-MSSM Spectrum

At GUT scale:

- universal scalar masses large eg 50 TeV
- unified tree level gaugino masses -small eg 300 GeV
- Large Higgsino mass eg 50 TeV
- one loop gaugino masses partly cancel against suppressed tree contribution (unlike AMSB)

• At the TeV scale:

- Right Handed Top Squark is the lightest Squark (several TeV)
- Significant threshold corrections to Wino and Bino masses from the large Higgsino mass

LSP and Dark Matter:

- LSP usually Wino, but can also be Bino
- For the Wino, non-thermal production dominates.

Comments on EWSB

- Although a hierarchy is both generated and stabilised, the usual "Little Hierarchy Problem remains"
 - We don't solve this problem
 - Just assume that the microscopic constants (ie the G2 Manifold) are such that both
 - Radiative EWSB occurs and
 - M_z is 91.1876 GeV +-0.0021 GeV
 - Just applying Giudice-Masiero without this additional fine tuning would give $M_z = O(\text{few TeV})$.
- TanBeta turns out to be order ONE.

Spectrum at the LHC

Microscopic Constants

Light Gluino, Neutralinos Charginos, Higgs

Stop Right Lightest Squark

Heavy Squarks/Sleptons

parameter	Point 1	Point 2	Point 3	Point 4
δ	-6	-6	-6	-7
Q - P	3	3	3	3
$P_{ m eff}$	75	83	73	70
V_7	90	21.6	220	220
C_2	5	5	5	1
α_{unif}^{-1}	26.1	26.4	26.5	26.1
$Z_{ m eff}$	1.94	1.66	1.92	2.08
$m_{3/2}$	19266	35262	30032	16261
$\tan \beta$	1.40	1.45	1.39	1.39
μ	26488	45751	41585	22708
$m_{\tilde{g}}$	638.0	732.0	1048	734.5
$m_{\widetilde{\chi}_i^0}$	116.0	110.6	224.7	157.2
$m_{\widetilde{\chi}_{2}^{0}}$	152.5	228.2	258.2	157.7
$m_{\widetilde{\chi}_1^\pm}$	116.2	110.7	224.9	157.4
$m_{\tilde{u}_L}$	19269	35264	30037	16266
$m_{\tilde{u}_R}$	19269	35264	30037	16265
$m_{\tilde{t}_1}$	4462	9003	7469	3475
$m_{\tilde{t}_2}$	13974	25712	21870	11752
$m_{\tilde{b}_1}$	13974	25712	21870	11752
$m_{\tilde{b}_2}$	19252	35230	30011	16251
$m_{\tilde{e}_L}$	19267	35263	30033	16262
$m_{\tilde{e}_R}$	19267	35263	30033	16261
$m_{ ilde{ au}_1}$	19259	35246	30021	16251
$m_{\tilde{\tau}_2}$	19263	35254	30027	16258
m_h	117.5	120.7	118.8	115.5
m_A	40218	70182	63191	34388
A_t	2015	6199	3380	1427
A_b	798	1635	1199	665
$A_{ au}$	466	988	714	382

G2-MSSM at the LHC

X-sections

• Event topologies

• Discovery strategy

Production X-sections (pb)

P_{eff}	V_7	δ	$\sigma(\tilde{C}_1\tilde{N}_1)$	$\sigma(\tilde{C}_1\tilde{C}_1)$	$\sigma(\tilde{g}\tilde{g})$
70	560	-3	15.6	7.9	4.8
70	600	-6	3.9	2.0	1.5
72	300	-6	1.4	0.7	0.2
75	110	-6	0.4	0.2	0.02
75	190	-6	10.5	5.5	4.1
75	250	-9	12.2	6.2	???
77	190	-6	15.6	7.9	5.5
80	52	-6	15.5	8.0	3.8
82	70	-9	13.8	7.05	7.8

TABLE II: Production Cross Section for $\tilde{C}_1\tilde{N}_1,\,\tilde{C}_1\tilde{C}_1$, and $\tilde{g}\tilde{g}$ pair production (units are in pb)

The Meta-Stable Chargino

- The Lightest Chargino and N₁ (lightest neutralino) have the same mass at tree level (they are both W-ino's and there's little mixing)
- Their masses get small 1-loop corrections and the mass difference is between one and two PION masses. (Similar to some AMSB models, but the combined set of signatures different).
- The Chargino decays into N₁ and a "W"
- The "W" decays either into a soft PION or lepton
- The Chargino decays inside the detector (few cm's)

IN C.M.S.

SHORT TRACK STUBS.

NI

With only these partons the C-N and C-C events will not Trigger.

The Big Question is:
Are some
events with short track
Stubs Triggered on???

Discovery and Triggers

• Gluino pair production:

- Many hard jets and missing Energy. Trigger often.
- Order 10⁴ events at L = 10 fb-1. (few per hour if this is one LHC year)
- Many b-jets and W-bosons originating from tops.

Chargino Production channels:

- More events (10⁵ at 10fb-1), but do they trigger?
- Naively difficult since there are no quarks/leptons/photons in the main process
- Since the main signature is the short Track Stub, the events have to be triggered and searched for later, "offline".
- We find that often there is initial state radiation which produces a jet with a PT > 35 GeV. This really helps for Triggering.

Comparing CMS/ATLAS

• CMS Triggering Charginos:

- With current low L (10³²) triggers, CMS has a pure Missing ET trigger of 65GeV, which triggers these events more than 10% of the time :))
- However, this is only for the first 100 pb-1 or so and there will be a few hundred events.
- Latest Trigger menus (after September 07)?
- At Higher L (10³³) this moves to 91 GeV and very few events will pass this :((
- The ID has layers at 4cm, 7cm, 10cm and 20cm
- The "C" in CMS is a very good thing for these phenomena!

Comparing CMS/ATLAS

• ATLAS Triggering Charginos:

- Low L (10³2) trigger menu has a jet45GeV+MET50GeV trigger which keeps > 10% of evts :))
- ATLAS ID has pixel layers at 5cm, 9cm and 12cm with the first SCT layer at 30cm
- In ATLAS the <u>only</u> information about the direct Chargino production will be from the pixel detector, unlike CMS, which will sometimes have more than three hits.
- Overall, both CMS and ATLAS have plus and minus points.
 - Clearly needs more serious Detector sim. Study.
 - Underway (in both CMS and ATLAS).

Conclusions

- The G2-MSSM is a well motivated phenomenological model
- It has a very distinctive set of signatures
- If we discover evidence for events with many tops, W's, b-jets we should also start looking for short track stubs in monojet + EtMiss events
- Though non-trivial, it seems possible and challenging to find these in the CMS and ATLAS detectors

